If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (2 + -9xy2) * x * dx + (4y2 + -6x3) * y * dy = 0 Reorder the terms for easier multiplication: x * dx(2 + -9xy2) + (4y2 + -6x3) * y * dy = 0 Multiply x * dx dx2(2 + -9xy2) + (4y2 + -6x3) * y * dy = 0 (2 * dx2 + -9xy2 * dx2) + (4y2 + -6x3) * y * dy = 0 (2dx2 + -9dx3y2) + (4y2 + -6x3) * y * dy = 0 Reorder the terms: 2dx2 + -9dx3y2 + (-6x3 + 4y2) * y * dy = 0 Reorder the terms for easier multiplication: 2dx2 + -9dx3y2 + y * dy(-6x3 + 4y2) = 0 Multiply y * dy 2dx2 + -9dx3y2 + dy2(-6x3 + 4y2) = 0 2dx2 + -9dx3y2 + (-6x3 * dy2 + 4y2 * dy2) = 0 2dx2 + -9dx3y2 + (-6dx3y2 + 4dy4) = 0 Combine like terms: -9dx3y2 + -6dx3y2 = -15dx3y2 2dx2 + -15dx3y2 + 4dy4 = 0 Solving 2dx2 + -15dx3y2 + 4dy4 = 0 Solving for variable 'd'. Move all terms containing d to the left, all other terms to the right. Factor out the Greatest Common Factor (GCF), 'd'. d(2x2 + -15x3y2 + 4y4) = 0Subproblem 1
Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0Subproblem 2
Set the factor '(2x2 + -15x3y2 + 4y4)' equal to zero and attempt to solve: Simplifying 2x2 + -15x3y2 + 4y4 = 0 Solving 2x2 + -15x3y2 + 4y4 = 0 Move all terms containing d to the left, all other terms to the right. Add '-2x2' to each side of the equation. 2x2 + -15x3y2 + -2x2 + 4y4 = 0 + -2x2 Reorder the terms: 2x2 + -2x2 + -15x3y2 + 4y4 = 0 + -2x2 Combine like terms: 2x2 + -2x2 = 0 0 + -15x3y2 + 4y4 = 0 + -2x2 -15x3y2 + 4y4 = 0 + -2x2 Remove the zero: -15x3y2 + 4y4 = -2x2 Add '15x3y2' to each side of the equation. -15x3y2 + 15x3y2 + 4y4 = -2x2 + 15x3y2 Combine like terms: -15x3y2 + 15x3y2 = 0 0 + 4y4 = -2x2 + 15x3y2 4y4 = -2x2 + 15x3y2 Add '-4y4' to each side of the equation. 4y4 + -4y4 = -2x2 + 15x3y2 + -4y4 Combine like terms: 4y4 + -4y4 = 0 0 = -2x2 + 15x3y2 + -4y4 Simplifying 0 = -2x2 + 15x3y2 + -4y4 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Solution
d = {0}
| 3x+1=5+x | | y^2-5y+49=y+2 | | tan(27)=13/x | | (2x+2x)=35+5x | | -9x-13=-104 | | 5x+4x+6=2x+12 | | -38+10x=6x+66 | | -(x-7)=6x+8 | | 2(14-5y)-y=-5 | | -x-9=21 | | -22-4x=-74 | | -x-59=53+6x | | y/2+21.5=26 | | 7/125+15=-17 | | 7n-(-16)=100 | | 4h+2t=58 | | x-0.9y=2.8 | | 3x-5=y+6 | | x+12=4x-3 | | 9(42)-9(4)=9(30)+9(z) | | x^3-5x^2+4x=10 | | 4-8b^2=-100 | | 30+18*x=87 | | 30+19x=87 | | ln*5x=3 | | y^18/(25x^34z^28) | | 2x-72/x^3=0 | | 1.2x+3.7=4.5x | | -28-y=-7 | | 1/8x=16 | | 1/8x+16 | | 2x^2-2=(1/3)^-1 |